Strategy Selection Revisited
The original Strategy Selection approach used two strategies, which were
manually registered and a simple [0, 1]
list to decide which would be the
target of the strategy.
Because Python offers a lot of instrospection possibilities with metaclasses,
one may actually automate the approach. Let’s do it with a decorator
approach which is probably the least invasive in this case (no need to define a
metaclass for the strategies)
Reworking the factory
The factory now:
-
is declared before the strategies
-
has an empty
_STRATS
class attribute (it had the strategies to return before) -
has a
register
classmethod which will be used as decorator and which accepts an argument which will be added to_STRATS
-
has a
COUNT
classmethod which will return an iterator (arange
actually) with the count of the available strategies to be optimized -
bears no changes to the actual factory method:
__new__
, which keeps on using theidx
parameter to return whatever is in the_STRATS
class attribute at the given index
class StFetcher(object): _STRATS = [] @classmethod def register(cls, target): cls._STRATS.append(target) @classmethod def COUNT(cls): return range(len(cls._STRATS)) def __new__(cls, *args, **kwargs): idx = kwargs.pop('idx') obj = cls._STRATS[idx](*args, **kwargs) return obj
As such:
- The
StFetcher
strategy factory no longer contains any hardcoded strategies in itself
Decorating the to-be-optimized strategies
The strategies in the example don’t need to be reworked. Decoration with the
register
method of StFetcher
is enough to have them added to the
selection mix.
@StFetcher.register class St0(bt.SignalStrategy):
and
@StFetcher.register class St1(bt.SignalStrategy):
Taking advantage of COUNT
The manual [0, 1]
list from the past when adding the strategy factory to
the system with optstrategy
can be fully replaced with a transparent call
to StFetcher.COUNT()
. Hardcoding is over.
cerebro.optstrategy(StFetcher, idx=StFetcher.COUNT())
A sample run
$ ./stselection-revisited.py --optreturn Strat 0 Name OptReturn: - analyzer: OrderedDict([(u'rtot', 0.04847392369449283), (u'ravg', 9.467563221580632e-05), (u'rnorm', 0.02414514457151587), (u'rnorm100', 2.414514457151587)]) Strat 1 Name OptReturn: - analyzer: OrderedDict([(u'rtot', 0.05124714332260593), (u'ravg', 0.00010009207680196471), (u'rnorm', 0.025543999840699633), (u'rnorm100', 2.5543999840699634)])
Our 2 strategies have been run and deliver (as expected) different results.
Note
The sample is minimal but has been run with all available
CPUs. Executing it with --maxpcpus=1
will be faster. For more
complex scenarios using all CPUs will be useful.
Conclusion
Selection has been fully automated. As before one could envision something like querying a database for the number of available strategies and then fetch the strategies one by one.
Sample Usage
$ ./stselection-revisited.py --help usage: strategy-selection.py [-h] [--data DATA] [--maxcpus MAXCPUS] [--optreturn] Sample for strategy selection optional arguments: -h, --help show this help message and exit --data DATA Data to be read in (default: ../../datas/2005-2006-day-001.txt) --maxcpus MAXCPUS Limit the numer of CPUs to use (default: None) --optreturn Return reduced/mocked strategy object (default: False)
The code
Which has been included in the sources of backtrader
from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import backtrader as bt from backtrader.utils.py3 import range class StFetcher(object): _STRATS = [] @classmethod def register(cls, target): cls._STRATS.append(target) @classmethod def COUNT(cls): return range(len(cls._STRATS)) def __new__(cls, *args, **kwargs): idx = kwargs.pop('idx') obj = cls._STRATS[idx](*args, **kwargs) return obj @StFetcher.register class St0(bt.SignalStrategy): def __init__(self): sma1, sma2 = bt.ind.SMA(period=10), bt.ind.SMA(period=30) crossover = bt.ind.CrossOver(sma1, sma2) self.signal_add(bt.SIGNAL_LONG, crossover) @StFetcher.register class St1(bt.SignalStrategy): def __init__(self): sma1 = bt.ind.SMA(period=10) crossover = bt.ind.CrossOver(self.data.close, sma1) self.signal_add(bt.SIGNAL_LONG, crossover) def runstrat(pargs=None): args = parse_args(pargs) cerebro = bt.Cerebro() data = bt.feeds.BacktraderCSVData(dataname=args.data) cerebro.adddata(data) cerebro.addanalyzer(bt.analyzers.Returns) cerebro.optstrategy(StFetcher, idx=StFetcher.COUNT()) results = cerebro.run(maxcpus=args.maxcpus, optreturn=args.optreturn) strats = [x[0] for x in results] # flatten the result for i, strat in enumerate(strats): rets = strat.analyzers.returns.get_analysis() print('Strat {} Name {}:\n - analyzer: {}\n'.format( i, strat.__class__.__name__, rets)) def parse_args(pargs=None): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Sample for strategy selection') parser.add_argument('--data', required=False, default='../../datas/2005-2006-day-001.txt', help='Data to be read in') parser.add_argument('--maxcpus', required=False, action='store', default=None, type=int, help='Limit the numer of CPUs to use') parser.add_argument('--optreturn', required=False, action='store_true', help='Return reduced/mocked strategy object') return parser.parse_args(pargs) if __name__ == '__main__': runstrat()